Role of Soil Organic Carbon in Crop Production

Jason Warren
Oklahoma State University

What is Soil Organic Carbon

- Carbon is a primary constituent of soil organic matter.
- The organic matter content of a soil can be estimated from organic C:

Organic Matter = 1.724*organic carbon

Soil Organic Carbon Loss in Oklahoma

- Presettlement there were approximately 2.3 billion tons of carbon in Oklahoma Soils
- We have lost ~114 million tons of Carbon through cultivation:
 - (38% of C in top 6 in)

Magruder Plots, Stillwater: Soil Carbon lost after 110 years of Continuous Wheat

- Initial C was 1.8%
- Lost 46 to 70% of the initial C.

Functions of Soil Organic Carbon/Matter

- Store house for nutrients
- Increases cation exchange capacity
- Buffers the soil against rapid pH changes
- Increases water-holding capacity
- Improves soil structure
 - Reduces crusting and increases infiltration
 - Reduces the effects of compaction
- Provides energy for biological activity

Storehouse for Nutrients

Nutrient	Concentration in Organic Matter	Fraction of Total in Surface Soil
	%	
С	50	90-100
N	5	95
Р	2	50
S	0.7	90

 Availability of N and S are influenced by organic matter

Storehouse for Nutrients

 Organic Matter plays a central role in the N and S cycles.

Storehouse for Nutrients

- During organic residue decomposition inorganic N can be
 - Immobilized if C/N ratio is above 10 (Straw)
 - Mineralized if C/N ratio is below 10 (Soybean)
- Must over come microbial demand for N

Cation Exchange Capacity

- CEC is responsible for the soils ability to adsorb positively charged nutrients
 - Ca^{2+} , K⁺, or Mg²⁺
- CEC can adsorb protons (H⁺)
 - Therefore organic matter buffers against rapid pH changes (changes in proton concentrations)
 - This does not mean that organic matter will prevent acidic pH

Cation Exchange Capacity

Soils capacity to adsorb cationic nutrients.

Soil Constituent	CEC
	Charge /100gram
Kaolinite	1-10
Mica	20-40
Vermiculite	120-150
Montmorillonite	80-120
Soil Organic Matter	100-300

 Changing organic matter content most viable way to increase CEC

N**₩** Till

Influences on Soil Water

- Organic matter can adsorb up to 90 % of its weight in water
- Increasing organic C content by 1% increases water holding capacity of top 6 in. by 0.25 in.

Influences on Soil Water

- Soil organic C improves structure
 - Biological macropores
 - Influences adhesive forces in soil
- Surface residue is also needed to prevent

crusting

- Increases infiltration
- Residue reduces
 evaporative water
 losses.

Soil Structure

 Improved soil structure in no-till systems reduces penetration resistance

Soil Carbon Sequestration

- Transfer of atmospheric CO₂ to the soil through land management practices.
- The sequestration of CO₂ results in the formation of a Carbon Credit or <u>Offset</u>.
- Goal:
 - Offset anthropogenic CO₂ emissions to atmosphere

What's the Potential for Soil Sequestration of CO₂

- The USDA estimates that U.S. Farms and Rangeland could sequester 12-14% of current U.S. CO₂ emission
- Much of this CO₂ will be sequestered through the reversal of soil carbon losses from:
 - Cultivation
 - Overgrazing

No-till Reduces Soil Respiration

- Residue decomposes more slowly on the soil surface.
- Increased water status potentially increases residue deposition.
- No-till minimizes soil aeration
 - Minimizes soil respiration.

Improved Soil Quality may Increase Litterfall if Productivity Increases

Dryland crop rotations

12-years, No-till Eastern Colorado 0-8 inches Sherrod et al. (2003)

Some No-till Guidelines:

- Implements acceptable for use include:
 - No-till planter/drill
 - Subsurface disturbance implements:
 - Anhydrous applicator
 - Manure knife applicator
 - Subsoiler/ripper
 - General rule:
 - 2/3 of soil can <u>not</u> be disturbed
- Residues can <u>not</u> be burned

Final Thoughts

- Organic C increases
 - Nutrient holding capacity
 - Water storage and infiltration
 - Limits compaction
- Accumulation of soil organic C has external value as a carbon credit.